Offsetting effects of reduced root hydraulic conductivity and osmotic adjustment following drought.

نویسنده

  • M Rieger
چکیده

Root hydraulic conductivity (L(p)) and leaf osmotic potential at full turgor (Psi(pi,o)) were measured in young, drought-stressed and nonstressed peach (Prunus persica (L.) Batsch), olive (Olea europaea L.), citrumelo (Poncirus trifoliata Raf. x Citrus paradisi Macf.) and pistachio (Pistachia integerrima L.). Drought stress caused a 2.5- to 4.2-fold reduction in L(p), depending on species, but Psi(pi,o) was reduced only in citrumelo and olive leaves by 0.34 and 1.4 MPa, respectively. No differences existed in L(p) among species for nonstressed plants. A simple model linking L(p) to osmotic adjustment through leaf water potential (Psi) quantified the offsetting effects of reduced L(p) and osmotic adjustment on the hypothetical turgor pressure difference between drought-stressed and nonstressed plants (DeltaPsi(p)). For olive, the 2.5-fold reduction in L(p) caused a linear decrease in DeltaPsi(p) such that the effect of osmotic adjustment was totally negated at Psi = -3.2 MPa. Thus, no stomatal closure would be required to maintain higher turgor in drought-stressed olive plants than in nonstressed plants over their typical diurnal range of Psi (-0.6 to -2.0 MPa). For citrumelo, osmotic adjustment was offset by reduced L(p) at Psi approximately -0.9 MPa. Unlike olive, stomatal closure would be necessary to maintain higher turgor in drought-stressed citrumelo plants than in nonstressed plants over their typical diurnal range of Psi (0 to -1.5 MPa). Regardless of species or the magnitude of osmotic adjustment, my analysis suggests that a drought-induced reduction in L(p) reduces or eliminates turgor maintenance through osmotic adjustment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mild Salt Stress Conditions Induce Different Responses in Root Hydraulic Conductivity of Phaseolus vulgaris Over-Time

Plants respond to salinity by altering their physiological parameters in order to maintain their water balance. The reduction in root hydraulic conductivity is one of the first responses of plants to the presence of salt in order to minimize water stress. Although its regulation has been commonly attributed to aquaporins activity, osmotic adjustment and the toxic effect of Na+ and Cl- have also...

متن کامل

Evaluation of changes in the water relations, osmotic adjustment and stay- green of different genotypes of sorghum under post-flowering drought stress

To investigate the effects of drought stress on the water stress, osmotic adjustment and stay green of sorghum genotypes and their relationship with grain yield, a split-plot on randomized complete block design with three replications was conducted at the experimental field of Seed and Plant Improvement Institute, Karaj, Iran in 2015. The main factor was three treatments: control (irrigation af...

متن کامل

Geographical variation in water relations, hydraulic architect

leaf hydraulic conductance, components of tissue water potential, hydraulic architecture parameters and xylem embolism were examined in greenhouse-grown two-year-old Aleppo pine (Pinus halepensis Mill.) seedlings from six origins representing the geographic range of the species in Italy. Cortical resin composition of the seedlings was also determined. Measurements were made on well-watered seed...

متن کامل

Plasma membrane aquaporins play a significant role during recovery from water deficit.

The role of plasma membrane aquaporins (PIPs) in water relations of Arabidopsis was studied by examining plants with reduced expression of PIP1 and PIP2 aquaporins, produced by crossing two different antisense lines. Compared with controls, the double antisense (dAS) plants had reduced amounts of PIP1 and PIP2 aquaporins, and the osmotic hydraulic conductivity of isolated root and leaf protopla...

متن کامل

EFFECT OF SILICON PRIMING ON SEEDLING GROWTH, ROOT XYLEME ANATOMY AND ION ACCUMULATION OF BARLEY (Hordeum vulgare L.) TO ALLEVIATE DROUGHT STRESS

The detrimental drought effects could be listed as the loss in dry weight and silicon is known to enhance crop tolerance to drought by increasing seedling growth and hydraulic conductivity. To investigate the effects of silicon priming (0, 1 and 2 mM as sodium silicate), on seedling growth and root anatomy of three barley cultivars (Khatam, Rihane, and Nimrooz) a laboratory experiment was condu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tree physiology

دوره 15 6  شماره 

صفحات  -

تاریخ انتشار 1995